909 research outputs found

    Supernova 1972 e in NGC 5253

    Get PDF
    New absolute energy distributions of the Type 1 supernova 1972e in NGC 5253 extending to about 700 days after maximum light were obtained. A physical model of the expanding envelope, based on the identification of the feature at 6550 A with H-alpha, is proposed. It is described as a differentially expanding atmosphere, with electron density ranging from 10 to the 10th power near maximum light to about 10 to the 7th power, 340 days later, illuminated by a photosphere with temperature in the range 10,000 K to 7,000 K. More than 200 days after maximum, the spectrum was dominated by four features between 4200 A and 5500 A. Three of these four features matched the blended emissions from over 100 lines of Fe II. Possible identifications of the fourth feature with Mg I lambda 4571 or permitted lines of Fe II are also discussed

    Radial distribution of Fe XIV emission in the Cygnus Loop

    Get PDF
    The one dimensional distribution of Fe 14 emission has been determined along a radius of the Cygnus Loop through the use of a tilting filter photometer. The observed emission extends at least 5 arc minutes outside the optical filaments. A simple Sedov solution model of the temperature and density distribution behind the shock agrees with the observations if the shock front is near the extent of the Fe 14 emission, the shock velocity is from 300 to 250/kms and the density external to the remnant is about 0.7-1.4 cm to three minus 3 power. These parameters are in reasonable agreement with X-ray maps and optical radial velocities

    Extreme ultraviolet observations of active regions in the chromosphere and the corona

    Get PDF
    Extreme ultraviolet observations of active regions in chromosphere and corona from OSO-4 spectroheliomete

    Preliminary Spectral Analysis of SN 1994I

    Full text link
    We present optical spectra of the Type Ic supernova 1994I in M51 and preliminary non-LTE analysis of the spectra. Our models are not inconsistent with the explosions of C+O cores of massive stars. While we find no direct evidence for helium in the optical spectra, our models cannot rule out small amounts of helium. More than 0.1~\msol\ of helium seems unlikely.Comment: LaTeX, MN style, psfig, and natbib substyles, 7 pages, 4 figures, to appear in MNRAS. Postscript file available from http://www.nhn.uoknor.edu/~baro

    The discovery of optical emission from the SNR G 126.2 + 1.6

    Get PDF
    Interference filter photographs were used to identify an arc of nebulosity that is coincident with the radio contours of the galactic supernova remnant G 126.2 + 1.6. Spectrophotometry of the filament shows that the emission line spectrum matches the spectra of other galactic supernova remnants. In particular, the arc shows the usual strong SII, and NII emission lines seen in other remnants and unusually strong OII emission as seen in a few remnants. The spectrum can be adequately matched by a shock of velocity near 100 km/s in an interstellar cloud of density 3. If the SNR is at a distance of 4.5 kpc as indicated by the radio signal-D relation, then the observed pressure in the filament requires an initial energy near 4 x 10 to the 51st power (d/4.5 kpc) to the 3rd power ergs
    corecore